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Onset of the sharkskin phenomenon in polymer extrusion
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A specific form of melt flow instabilities associated with surface defects for polymer extrudates, and com-
monly referred to as the “sharkskin effect”, is modeled. When this effect occurs, a more or less regular pattern
of ridges on the surface is observed resembling the skin of a shark if bent. It is shown that the relaxation
oscillation model of Molenaar and Koopmajids Rheol.38, 99 (1994)] developed to describe “spurt” defects
— in this perturbation not only the surface but the extrudate as a whole shows distortions — can be expanded
to include a description for the dynamics of surface defect appearance. By introducing a nonlinear viscoelastic
constitutive equatioriKaye-Bernstein-Kearsly-Zapas mog@ito the relaxation oscillation model a boundary
layer can develop which shows oscillating behavior. Explicit criteria for the onset of this behavior are derived.
The relations between these criteria and experimental parameters are pointed out. This allows for an experi-
mental verification of the supposition that this kind of solution is the origin of the sharkskin effect. The current
macroscopic approach may form the basis for the reconciliation of the debate on the origin of melt flow
instabilities as either a “slip at the wall” or a nonmonotone “constitutive equation” phenomenon.
[S1063-651%98)02510-0

PACS numbd(s): 83.10.Nn, 83.50.Gd, 61.4te

[. INTRODUCTION give a negative sloping shear-stress—shear-rate curve are un-
stable(Ref.[14]). It implies that for selected shear rate val-
Melt flow instabilities, loosely referred to as “melt frac- ues more than one shear stress values are possible causing
ture,” are phenomena limiting polymer extrusion. The oc-the development of a more phase system, as worked out in
currence of these instabilities for plastics has been knowiRef. [15]. As the nonmonotonic nature of the constitutive
since at least 1945, as reported in H&f. Among the many equation is defined by the molecular composition of the ma-
papers devoted to the subject a few important reviews can herial (see, e.g., Ref.16]) the possibility of a surface layer
mentioned: Refs[2], [3], and [4]. In general one distin- development and its associated consequences can be consid-
guishes between surface and volumetric distortions of thered real.
extrudate. Considering extrusion through a capillary die, at On a microscopic level, a shear dependent model for slip-
relatively low shear flow rates, the extruded polymer strandpage at a polymer-solid interface was forwarded in RET].
can develop a surface with a more or less regular pattern dlippage is induced by a few polymer chains bounded to the
ridges resulting in an observable mattness or roughness. Thésirface which undergo a coil-stretch transition under the
phenomenon is often referred to as the “sharkskin effect.”shear stress. This may be understood as the buildup at the
The period of the sharkskin oscillations is typically in the wall of a layer of polymer molecules which act as molecules
order of 0.01 s. The prevalent trend in literature is to associ“grafted” to the wall and “entangled” with the bulk of the
ate this sharkskin effect with material slippage at the wallfluid. At the transition point the grafted chains disentangle,
due to a failure of adhesion between the solid die wall andand reduce the frictional forces significantly. Experimental
the fluid. Various experimental findings in, for example, evidence in Ref[18], using evanescent-wave-induced fluo-
Refs.[5], [6], and[7] seem to support a nonzero wall veloc- rescence and fringe pattern fluorescence recovery after pho-
ity vy - This leads to some empirical correlations definingtobleaching allowing characterization of dynamic behavior
vwai IN terms of wall shear stress valu@Ref. [8]) or even-  in the immediate vicinity(70 nm of the solid surface seem
tually to a model proposed H¥] determiningv,,4 in terms  to support the theory and the development of a “pseudo-
of differences in surface tension between polymer and didrush” or “mushroom” layer.
material. However, not all experimental work reported in the At higher flow rates the extrudate emerges in periodic
literature supports the wall-slip idea. For example, Regif§]  bursts, which is reflected in a pattern of pressure oscillations.
and[11] failed to find a slip value and interpret surface de-The period of these oscillations is typically on the order of
fects as a consequence of a cracking of the surface at the di® s. The dynamics of this so-called “spurt” regime can be
exit. In Ref.[12], it was explained that the cracking occurs described quantitatively in terms of the theory of relaxation
because the surface layer is accelerated from rest to the a@scillations in terms of the macroscopic variables of pressure
erage extrusion velocity. The acceleration causes a stretchirand flow rate, as reported in Refd9] and [20]. At even
flow, inducing tensile stresses higher than the tensile strengthigher flow rates, apparently no steady laminar shear flow
of the melt can withstand, giving rise to the cracking phe-mode exists, and grossly distorted extrudates emerge for
nomenon(Ref.[13]). The absence of slip can be advocatedmany polymers. All these instabilities are restricting the ex-
on theoretical grounds on the basis of the existence of #usion of polymers for practical purposes. For all practical
nonmonotonic constitutive equation. All shear rates whichpurposes, the first sign of any type of extrudate distortion—
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capillary coupled to a barrel. The polymer melt is set into

- b motion by a plunger. Important characteristics of this system
are the pressure differen€eover the capillary, the volume
polymer capillary flux Qg leaving the capillary, and the volume flu®;,
density p)  — — pushed into the system by the plunger. The pressure in the
pressure F(V die extrudate, barrel is assumed to be uniform. We study the extrusion
. flow rate Qu(®. device under the condition that the plunger veloaity is

1 1 kept constant. This implies that

plunger, barrel
speed v, Qin:Up A, (21)

area A.

flow rate Qu(®. is also constant. HerA is the area of the plunger.

The flow in the capillary has extensively been studied in
Refs.[21-23. These references showed that the flow in the
) ] . capillary can be described as an axisymmetric, incompress-
often the sharkskin effect—is considered as a polymer extruipe, shear flow. The velocity profile(t,r) in the capillary is
sion failure. Accordingly, the capability of predicting the on- 5 function of timet and the radial coordinateonly, and not

set of any melt flow instability in terms of molecular of the position along the capillary. The shear ratg,r) is
composition and flow boundary conditions is critical for op- then given by

timizing polymer processing.
In this paper we focus on the onset of the sharkskin insta- du(t,r)

bility. To that end the original one-dimensiondD) relax- o(t,r)=— Eramt (2.2

ation oscillation model, proposed in R¢fl9], will be ex-

panded into a 2D model. As for the constitutive equationsBecause of axisymmetry we have, for glthe condition

use will be made of the viscoelastic model of Kaye, Bern-

stein, Kearsly, and Zapa&BKZ). It is shown that the re- w(t,0)=0. (2.3

sulting model for barrel and die together admits solutions ) ) -

with a very thin oscillating boundary layer in the die. TheseAt the wall we impose the no-slip condition

surface oscillations may be appropriately interpreted as de-

scribing the sharkskin instability. v(t.R)=0, 24

. In the present apProaCh possible slip at the wall is NOhereR is the radius of the capillary. Using the conditions
included. The analysis shows that the KBKZ model also ad-

mits an oscillatory boundary layer if the no-slip condition is ;t;;vaeswe can write the volume i@, through the capi
applied. Inclusion of slip at the wall would require a thor-
ough and separate analysis. Since quantitative theoretical R R

models for the slip condition in relation to extruder geom- Qout(t)ZZWJO v(t,r)r dr:WJ o(t,r)rzdr. (2.5

etry, polymer characteristics, and velocity profile in the die 0

are not yet available, we have to restrict the present work 0o modeling of the extrusion process is based on conserva-

this pqint. ) tion laws. In the following we shall apply the laws of con-
An important aspect of the present model is that the onsel, .\ ation of mass and momentum respectively.
of the sharkskin effect can be predicted in terms of the poly- '

mer properties and the extruder geometry. This enables ex-
perimental verification of the results. The present approach

FIG. 1. Schematic drawing of the extrusion device.

A. Conservation of mass

might also offer the possibility to rationalize both the “wall-  Since the flow in the capillary is assumed to be incom-
slip” and “constitutive” origins of melt flow instabilities as pressible, conservation of mass is trivially satisfied there. In
valid macroscopic explanations. the barrel the compressibility of the polymer melt has to be

The structure of this paper is as follows. The relevanttaken into account. Denoting the height of the barrehigt)
conservation laws are presented in Sec. Il and the resultingnd the(uniform) density of the melt by (t), the total mass
equations are brought into dimensionless form in Sec. Ill. Inn the barrel is given byAhp, while the mass flux leaving the
Sec. IV, it is shown that for low values of the pressurebarrel into the capillary is given byQ,,. Conservation of
unique steady solutions are found, but that for pressure valass in the barrel is then expressed by the equation
ues above a critical one infinitely many steady solutions ex-

ist. In Sec. V the existence of solutions with an oscillating d _
, = (Ahp)=—pQqyt. (2.6
boundary layer is shown. In Sec. VI the onset of the shark- dt
skin effect is dealt with, while in Sec. VII a discussion of the
results is given. The melt compressibility of the polymer is defined by
1. :
II. MODELING THE EXTRUSION PROCESS - p=xP, (2.7
p

We consider an extrusion device, which is very simple but _ .
includes the essential elements of the extrusion process. Where the notatiop=dp/dt is used. Usinch=—v,, Egs.
cross section is shown in Fig. 1. The device consists of #2.1), and(2.7), we may rewrite(2.6) in the form
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. From Eg.(2.12) it is seen thap is the sum of an “internal”
P= Axh AQ, (2.8 term including memory effects through an integral over the
past, and an “external” term, which varies linearly along the
capillary.
By Ref.[21], it is shown that the momentum equation can
be written as

with the definitionAQ=Q;,— Q,u. The change oh, given

by v, is much slower than the typical period of the shark-

skin phenomenon. Because of theais assumed to be con-

stant throughout the present analysis. . ytor
TOTH A ton ©

B. Conservation of momentum

. . . . . . t t’ !r
The velocity profile in the capillary is determined by the +'“)‘f # e Mt=Dg
following balance of linear momentum: o CHy(t,7r)

_1 P pff du(t,8) d (2.14

v _L PO _»p
p E‘F(V'V)V =V'T, (29) 2 L r Jo at

for O=<r=<R and t=0. The extrusion is assumed to have
started at=0.

We are interested in the behavior of the system after the
transient phenomena have died out, so in the limite. The
second term in the left-hand side of H@.14) can then be
neglected. After the shift— r— 7 in the third term of Eq.
(2.14) we obtain the equation

wherev is the velocity andT the total, symmetric stress
tensor. As usuallyT is written as the sum

T=—pl+24D+S. (2.10

Herel is the unit tensorp the pressure in the capillary,the
coefficient of the Newtonian viscosity, ard the rate-of-

deformation tensor toeytt-rr)
no(t,r)+uN | —————=e "dr
o CHyi(tt—1r)
D=3 (Vv+(VV)7). (2.11)
1 P(Y) pfrown@d -
The form ofSin Eq. (2.10 follows from the specific consti- 2T T ) T a 3 (219
tutive model under consideration. For this we choose the
KBKZ model, which will be introduced in some detail un-
derneath. IIl. DIMENSIONLESS MODEL

The equations in Sec. Il can be analyzed in detail only if
C. KBKZ model they are put into dimensionless form. The dimensionless
n- guantities will be denoted using the superscripNatural
choices for the units of length and time aReand A1,
respectively. So

The KBKZ model is a nonlinear viscoelastic model i
cluding memory effects. Full expositions of this model are
given in Refs.[24, 25. Here we use the version which is
appropriate for the present system and described by Refs. r
[26, 21]. This version includes only one relaxation rate ex- r*=—, t*=At. (3.2
plicitly. This dominant relaxation rate is included in®in R
Eqg. (2.10. The rest of the spectrum is represented by th

&or the velocity, the shear rate, and the shear strain profiles
term with the Newtonian viscosity in Eq. (2.10. Details of 4 ' P '

this modeling approach are given by Ref7]. In view of the we take
symmetry of the capillary we use cylindrical coordinates, 1 1
with radial coordinate and axial coordinate. As origin we v¥i=——v, o'=—— 0, yY'=—17y 32
choose the point where the capillary merges into the barrel. JVeRA VJen Jc
for:rr: the KBKZ model the pressurein the capillary has the The fluxes in Eqs(2.1) and(2.5) are scaled accordingly:
L-2z ! 1 —\Nt—17 F=—Q
p(t,r,z)=P(t) T-l-/\l,)\fix me t=ndr, Qin \/ER?’)\ Qins
(2.12
* *\ — 1 — ! * (4% px *\24r*
Here L is the length of the capillaryu the elastic shear ~ Qoult™)= JoREN Qout(t)_”fo w* (t5,r7)(re) dr*.
modulus,\ the relaxation rate, and a dimensionless con- 3.3
stant. The quantityy is the magnitude of the shear strain at
time t if the strain is applied in the past at time The pressuré® is scaled with the shear modulys
t 1
'y(t,T,I’)=f w(s,r)ds. (2.13 P*(t*):T P(t). (3.9
T o
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The mass conservation equati¢h8) then transforms into R3
V= W (36)
dpP* AGH xNu
dev 7 Q™ 3.5 The accumulated shear strajnin Eq. (2.13 is already di-
mensionless. The KBKZ momentum equati¢hl5 reads,
where the dimensionless quantityis defined by in dimensionless form,
t* ’y*(t*,t*—T*,r*) i w R27\2p J~r* ﬁv*(t*,f*)
*(t* or*) 4 T — " rxp*x_ * * .
o™ (1*,r*) /‘LJ’O 1+(’y*(t*,t*—7'*,r*))2 € dr 2L r=pP r* 0 £ ot dé¢ (3.7

To simplify the notation we introduce the function

X
h(x)= T2 (3.9
with derivative
(0= 2 hix)= —x 3.9
(X)—& (X)—m- (3.9
Dividing Eq. (3.7) by u« and using Eq(3.8), we find
ew* + jt h(y* (t* ,t* —7* ,r*))eff*dr*
0
1 a (= v*F(t*,&)
I *p* _ * - 7 *
_zﬁr P r* fo g (9t* dfa
(3.10
with the definitions
7\ R R2\2%p
8—7, 'B_E' a= . (3.11)

The parametes is the ratio of the Newtonian viscosityand
the extra stress viscosify/A. Note that the quotient/s is
the Reynolds numbeR?\ p/ 5. For the materials under con-
sideration we have that<1. The last term in Eq.3.10 will

Substitution of this into Eq(3.10 yields the KBKZ momen-
tum equation

H(w(r))=3 BrP, 0=r<l1, 4.2

with

H(w)=sw+fwh(w7')effd7'. (4.3
0

Here we have taken the limit— oo,

Fore<1, H is a nonmonotonic function ab as shown in
Fig. 2. The curve has a relative maximuy,,, at wax, and
a relative minimurmH ,,;, at oy, From Fig. 2 it is immedi-
ately seen that Eq4.2) has a unique solution only if the
right-hand side attains a value smaller théyg;,. For values
of the right-hand side in the rang®l {i,, Hmay, the equation
has three solutions. In Table I, values 0.y, Hmax: @min >
Hmin, andow,,, are given.

V. OSCILLATING BOUNDARY LAYERS

The sharkskin effect is typically a boundary layer effect:
the surface of the extrudate shows the sharkskin pattern,
whereas the inner core of the extrudate does not show any
sign of oscillating behavior. Here we analyze whether the
observed phenomena can be described in terms of the models
presented above. Our purpose is to show that the nonmono-
tonicity of the stress-strain relation implies that the flow in

therefore be neglected in the following. In practice we also

havee <1. However, the term witls cannot be omitted. The
producte * will be shown to play an important role in the
model.

The analysis in the next sections is based on the dimen
sionless equations. Because confusion is hardly possible, th

* symbol will be omitted.

IV. STEADY SOLUTIONS

1r 7
T o8

If the operating conditions are kept constant, the extrusion
process is experimentally observed to converge to a constar
or periodic solution when time proceeds. Here we analyze
whether the model presented in Sec. Ill admits constant so

lutions, thus with thew andv profiles being independent of 0-101 o5 : 3 m = oo
time. If o does not depend oy we have, from Eq(2.13), ‘ T Bpin P @i ® =

y(r,t,7)=o(r)(t— 7). (4.2 FIG. 2. The functiorH in Eq. (4.3) for e=0.01.
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TABLE I. Values of the quantities denoted in Fig. 2 for various Comparing this with Eq(5.1b we conclude from the fact

values ofe. that Q is real that
H i H. ; 1
€ Wmax max min min ®min Qin= Wf wo(r)rzdr,
0.001 1.32 0.35 48.7 0.12 0.13 0
0.003 1.34 0.35 23.9 0.18 0.23
0.010 1.46 0.36 10.0 0.29 0.48 [t )
0.025 1.96 0.39 3.01 0.38 1.37 Qu= ”fo wy(r)redr,

_ o ¢©1=0. (5.3

the capillary may develop an oscillating boundary layer,
which might be related to the observed sharkskin effect.  The phase difference, follows from the mass conservation

For higher values of the pressure, i.e.s BP>H,,,, the equation(3.5). Substitution of Eqs(5.13 and(5.1b) into Eq.
momentum equation@.2) have infinitely many constant so- (3.5) yields
lutions, due to the nonmonotonicity of the functith as _
shown in Fig. 2. Here we shall investigate whether E4<) 2i 69P,€'%2=—1Q;. (5.9
have solutions which are oscillating near the wall and con-
stant elsewhere in the capillary. Because the sharkskin osciBecauses, 9, P;, v, andQ are real and positive, we con-
lations have small amplitudes, we shall investigate small amelude that
plitude perturbations of constant solutions. In view of the
fact that observed oscillations are localized near the wall, we _m
search for solutions that are constant everywhere except for a $2773"
very thin boundary layer of thicknes®

The extrusion device is assumed to operate in the constain Sec. VI we investigate whether the KBKZ momentum
flux mode, so withQ;, being constant. Let us denote an equation admits solutions which locally oscillate.
arbitrary constant solution of the momentum equations cor-

(5.9

responding to théconstank pressureP by wq(r). In a con- VI. KBKZ MODEL
stant state we hav®,,= Qi,. A solution oscillating around ) .
this constant solution can be written as Here we study solutions of the KBKZ equatid8.10.
The nonlinearity of Eq(3.10 comes from the integral
w(t,r)=wy(r)+wy(r)e, (5.1a .
f h(y(r,t,t—7))e "dr, (6.2)
Qouf(t) =Qin+ Q€' #1), (5.1b 0
_ with
P(t)=Po+26P,e'("*¢2), (5.10
t
) . y(rt,t—7)= w(s,r)ds. (6.2
whered=0 is the angular frequency of the oscillation, and t—r

¢, and ¢, are possible phase differences.

The factor & in Eq. (5.19 is introduced to model the Using representatiofb.1g, we can evaluate this integral ex-
coupling between the die and the barrel in a consistent wayplicitly. We then obtain
In the die we expect a pressure oscillation of amplitije .
only in the boundary layer, while the inner layer is not per- Y(r,tt=1)=wo(r) 7+ 0y (N f(9,7)e'™, (6.3
turbed. Effectively we thus havB;=0 in the inner layer.

The pressureP in the barrel is taken to be uniform. The with
contribution of the pressure oscillatioRs in the die toP is 1—e 07
therefore weighted as follows. The die and the barrel are in _ —€
. . o . . f(d,7)=—i (6.9
contact via a cross section of the die with aredan nondi- 0

mensional units. Of this areand belongs to the boundary

layer and the rest to the inner layer. The ratio of these aread/e note that|f(9,7)[~1/9 if 9—o, and|f(F,7)|~ if

is taken as weighting factor. 9—0. The second term at the right-hand side of &53) is
The amplitudeso;, Q;, andP; of the perturbations are Small compared to the first term. This allows for the linear-

assumed to be small with respectag, Q;,, andP,, re-  1zation

spectively. Because of this we may linearize the momentum St

equations around the constant state. h(y(r,t,t=7))=h(wo7) + w1 f(,7)€""h" (we7),
The phase differenceg; and ¢, are easily found. Sub- (6.9

stituting (5.13 into (3.3 we obtain with h’ given by(3.9). Substituting(5.1a and the lineariza-

tion equation(6.5) into Eq. (3.10), we obtain the sum of the

Quu)= Wflwo(r)rde ﬂ_eif}flwl(r)err (5.2 unperturbed part, satisfying E@t.2), and the perturbed part,
ou . . .
0 0 given by
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0z}

o 1
wq(r) s-l—fo f(9,7)h' (we(r)r)e”"dr =§i,8rP1.

(6.6 o1}

Writing the factorf (4, 7) in the form

1
f(9,7)=5 [si(97) +i(cot -], (6.7

0.1

we can split Eq(6.6) into its real and imaginary parts. This
yields the equations w0zl

w1(r)[ed—gi(wo(r),3)]=0 (6.9 _ _

FIG. 3. The functiorg, as a function of} for w,,=1, 3, 9, and
and 27. Also, the functiore? is drawn fore =0.01.
w(r)g-(wo(r),$)= % BIrP,, 6.9 d
1(Nga(wo(r),9)=13 B 1 (6.9 EH(w)<O. 6.19

where the functiong; andg, are defined as

B This implies that Eq(6.12) has a solution only ifo,,4 lies in
91(wg, 9)= _f h'(wor)sin(dr)e "dr  (6.10 the range wherél has negative slope. Also refer to Fig. 2,
0 whereH is drawn fore =0.01. Conditiong6.14) and(6.15
thus iIMply o< owan<omin, @s indicated in Fig. 4. The
and resultingwq(r) profile has thus a discontinuity as shown in
. Fig. 5. The corresponding velocity profile, obtained by inte-
gz(wo,ﬁ):f h'(wor)(cos 97— 1)e "dr. (6.11) grating thew, profile, has a discontinuity in the slope rat
0 =1- 6 as shown in Fig. 6. It remains to analyze K.9).

_ S Multiplying both sides of Eq(6.9) by =r? and integrating
Because the perturbations are nonvanishing in the boundagyer the boundary layer-18 <r<1, we obtain

layer only, Egs(6.8) and(6.9) hold for 1- § <r<1. Equa-
tion (6.8 has the trivial solutionw,(r)=0, which corre-

au
sponds to constant momentum. Also a nontrivial solution Qu02(@wan, )= 5 BOSPy. (6.16
exists, corresponding to a periodic perturbation, provided
that the equation Combining Egs(5.4) and(6.16), we may eliminateQ, and
P,. This yields
e9—01(wo(r),)=0 612 Y
is satisfied for some¥>0. Because it is physically unaccept- 9o Wya, 0) = % Bv. (6.17)

able that the frequency would depend on position, we con-

clude that in the oscillating layew, has to be constant . . .
within the accuracy of the approximations we have made ir;I'he present model predicts that sharkskin may occur if both

the derivations. This implies that the boundary layer must b@onc_htlons(6.15) and (6.17) are satisfied. Cof’d'“"'ﬁﬁ-m
fairly thin; thusé <1. This is in accordance with the fact that Implies thatwwai € [ @max.wmin] should hold withwgay and
we are dealing with the onset of sharkskin. The next consid-
erations are valid only in the limié— 0. In view of this we
may take the factag, in Eq. (6.9 to be independent afand
evaluatew, always at the wall, denoting its value by

0o(1) = ya- (6.13

In Fig. 3, 91(wya, ) is plotted as a function off for sev- 38R ¢ -
eral values ofw,,y, . From this figure it is seen that E(.12
has a solution only if the slope gf (wy., ) at the origin is
positive and steeper than the slope of the kifle This leads
to the condition

H 4

-L-
I

>
>

T

1

1

1

1

1

1

1

d
D

& o0
o9 gl(wwa||ﬂ9)|a:o:_f h'(wyq7) 7€ "d7>6.
0

(6.19
. - ) ) FIG. 4. The thick line indicates a possible shear rate profile
From Eq.(4.3) we find that conditior{6.14) is equivalent to  satisfying Eq(4.2). The position of the jump from the left branch to
the condition the middle branch determines the thickness of the boundary layer.

(1) Doy %)
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FIG. 5. The shear rate profile corresponding to the construction

in Fig. 4. Here§ is the thickness of the boundary layer.

wmin 10 be read from Table I. These values dependeon
Condition (6.17) further restricts the number of possible so-
lutions. We have numerically determined
(@wai»BY) With a1 € [ @ max»@minl, SUCh that Eq(6.17) has

a solution for positived. The results are summarized in Fig.
7 for various values ot. The contour lines in this figure
represent the solutions of E@.17) with 9 real and positive.
The points off these lines correspond to solutions with com
plex 9. Inside the contour lines the imaginary part ®fis
positive, outside the contour lines it is negative.

In Fig. 7, two regions can be clearly discerned. For
<0.025 two values forw,, are found as long agBv
<0.01. These values are quite closedg,, and wy,. On
the other hand, forBv>0.05 no solution exists, and this
holds for alle.

We note that in the limit8v—0 the contour lines ap-
proach the values ab,;, andw,,. Following Eq.(3.5), this
limiting case corresponds to the system being held und
constant pressure. From E&.4) we conclude thaP,=0 if
v=0, so in that case an oscillating boundary layer does n
exist.

VII. ONSET OF THE SHARKSKIN EFFECT

A central issue in any theory about polymer flow insta-
bilities is the question whether a critical val@g.,; exists

A

<

b - - - - -

»
>

0 1-8 1 r

ONSET OF THE SHARKSKIN PHENOMENONN . . .

the pairs

e
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109
1074

e
0% 102 w0t -

FIG. 7. Contour lines indicating the solutions of E§.17) in
the (Bv,wy) plane.

such that the instability does not occur fQr,<Qg;, but
may occur forQ;,=Q:. Of course, not only is the exis-
tence of such a transition of importance, but also the possi-
bility to calculate its value in terms of the polymer properties
and the extruder geometry. We shall point out here the con-

sequences of the analysis in Sec. V @g;;. Because we
have already seen that the essential dimensionless parameters
are ¢ and the produciBv, we show how to findQ.;; as a
function of these two parameters.

Condition (6.15 states thatw,,, must lie on the second
branch ofH, where this function has negative slope; see Fig.
2. Condition(6.17) further restricts the number @, val-
ues for which the sharkskin effect may occur. From the con-
tour plot in Fig. 7 we find that two values fas,,,, are found
i; Bvis small enough. In Fig. 8 these values are indicated as
w, and oy, With 0pmaS 0 <wp<wny,. For small values of

in the pressur® is small. From Eq(4.2) and Fig. 2, it then

0%Ilows that thew(r) profile is completely situated on the

left branch ofH.

Let us follow what happens if, as is usual in the experi-
ments,Q;, is increased so gradually that, apart from transient
phenomena, Eq4.3 remains valid. We focus now on the
regime in which the system does not yet show volumetric
distortions. ThenQ,,~ Qi,. We wonder when surface dis-
tortions, thus the sharkskin effect, may appear for the first
time.

An increase ofQ;, implies an increase of the pressurge
and thus ofH, and thus ofw,,,. In Fig. 2, we observe that
Wy Can attain a value on the second brancH ipasses the
valueH i, and w,y thus passes the value, .

From Fig. 8 we see that the sharkskin effect may occur if
H attains the valudd(w,) for the first time. We thus con-
clude that the possible onset of the sharkskin effect is deter-
mined by the conditionw,,,;= w,. The corresponding(r)
profile is completely situated on the left branch-bbetween
0 andwy, . The corresponding critical valu®@.,;; can be cal-
culated from Eq(3.3b.

In Fig. 9 we have drawr.; as a function ofgv for ¢
=0.01. For other values the results are quite similar. We
discern the same two regimes as found in Fig.Qg;; is

FIG. 6. The velocity profile corresponding to the shear rate pronearly independent oBv if Bv<<0.02, whereas for larger

file in Fig. 5.

values, Bv>0.05 say, no sharkskin effect can occur, i.e.,
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FIG. 10. Qg as a function of.

@,

a

occur but with such a low frequency that it will not be de-

FIG. 8. Position ofw, and wy, in the (w,H) plane. tected experimentally.

Qgit==. So we conclude that, in a good approximatiQn,;
only depends og as long agBv is small. This dependence is
given in Fig. 10. Note tha®,;; is a dimensionless quantity; In Secs. V and VI, we have shown that the model in Sec.
the dimensionful value is obtained from the scaling in Eq.ll, describing polymer shear flow through a die coupled to a
(3.3). Another interesting feature of the model is that it pre-barrel, admits solutions with a thin, oscillating boundary
dicts the angular frequency of the sharkskin oscillations. Irlayer in the die. As constitutive equation the KBKZ model
Fig. 11 the value of the dimensionless frequercis given  has been used. However, in RE28] it was shown that ap-
as a function of8v for ¢ =0.01. The dimensionful frequency plication of the Johnson-Segalman-Oldroyd madele Refs.

is found from the scaling in Eq:3.1). In Fig. 11 it is seen [24, 25)) leads to very similar results, although the formulas
that 9—0 if Bv—0. Above we have found that fo8v involved are quite different from the KBKZ expressions
>0.05 the sharkskin effect does not occur. From Fig. 11 weabove.

find that for very smallBv values the sharkskin effect may

VIIl. DISCUSSION
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FIG. 11. Angular frequencyd as a function of8v for ¢
FIG. 9. Qi as a function ofBv for e =0.01. =0.01.
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The existence of oscillating solutions depends on the disharkskin effect can be interpreted as a boundary layer that
mensionless parametessand Bv, introduced in Eqs(3.6)  becomes unstable. The possible oscillations only start if the
and(3.11). These parameters are determined by the charadayer is perturbed, and this will usually happen in an uncon-
teristics of both the extruder geometry and the polymer proptrolled way. However, in most cases it is still possible to
erties. It is found that an oscillating boundary layer existsgetect a definite frequency in the sharkskin pattern.
only if Bvis small enough. As a rule of thumb we formulate  Another observation is th@r~h~1, with h the length of

this as the condition the barrel. This implies that the sharkskin instability should
4 stop, ifh—0, i.e., if the barrel becomes empty, because then
Br= <0.05. (8.1)  condition(8.1) is violated.
Axhul

The critical volume fluxQ;; only depends o, and the

If Eq. (8.1) is fulfilled, the critical valueQ; of the volume ~dependence is given in Fig. 10. Becagsey\/ u, this criti-
flux Q,, is nearly only dependent an and given in Fig. 10. cal value only depends on the polymer properties. The
The angular frequencies of the oscillations do depenggn  Present model predicts that the smakieis, the smalleQ
as is shown in Fig. 11. will be. The model further states that the dimensior®yl;;

An attractive and important feature of these results is thagcales withR® [cf. Eq.(3.3)]. These tendencies can easily be
they allow a direct comparison with experiment. Although it checked in experiments.
might be hard to use polymers characterized by one relax- If the results of the present analysis qualitatively agree
ation time only, the qualitative aspects of this analysis muswith the experimental data, the model can be considered as a
hold quite generally. For example, the existence of a criticafirst step in the direction of a theoretical description of ex-
value for By, given in Eq.(8.1) can be quite easily checked trusion instabilities. A very interesting extension would be
experimentally. Becaus@v is very sensitive to the value of the coupling of the present model to a model describing pos-
the die radiusR, the latter geometrical parameter is quite sible slip at the wall. An other refinement would be the in-
appropriate to be varied in the experiment. Wikeis varied  clusion of a spectrum of relaxation times. Since along these
in the experiment, not only conditigi8.1) could be checked, lines the relations between experimentally accessible quanti-
but also the dependence of the angular frequehon Bv,  ties like Q. and ¥ and the geometrical and polymer melt
and thus onR, as predicted by the results in Fig. 11. In parameters become known, this approach could be used to
practice, the extrudate seldom shows a highly regular patterfind extruder-polymer combinations with high values(f;
of ridges. This is in accord with the analysis above, that th¢29—31].
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