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Onset of the sharkskin phenomenon in polymer extrusion
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A specific form of melt flow instabilities associated with surface defects for polymer extrudates, and com-
monly referred to as the ‘‘sharkskin effect’’, is modeled. When this effect occurs, a more or less regular pattern
of ridges on the surface is observed resembling the skin of a shark if bent. It is shown that the relaxation
oscillation model of Molenaar and Koopmans@J. Rheol.38, 99 ~1994!# developed to describe ‘‘spurt’’ defects
— in this perturbation not only the surface but the extrudate as a whole shows distortions — can be expanded
to include a description for the dynamics of surface defect appearance. By introducing a nonlinear viscoelastic
constitutive equation~Kaye-Bernstein-Kearsly-Zapas model! into the relaxation oscillation model a boundary
layer can develop which shows oscillating behavior. Explicit criteria for the onset of this behavior are derived.
The relations between these criteria and experimental parameters are pointed out. This allows for an experi-
mental verification of the supposition that this kind of solution is the origin of the sharkskin effect. The current
macroscopic approach may form the basis for the reconciliation of the debate on the origin of melt flow
instabilities as either a ‘‘slip at the wall’’ or a nonmonotone ‘‘constitutive equation’’ phenomenon.
@S1063-651X~98!02510-0#

PACS number~s!: 83.10.Nn, 83.50.Gd, 61.41.1e
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I. INTRODUCTION

Melt flow instabilities, loosely referred to as ‘‘melt frac
ture,’’ are phenomena limiting polymer extrusion. The o
currence of these instabilities for plastics has been kno
since at least 1945, as reported in Ref.@1#. Among the many
papers devoted to the subject a few important reviews ca
mentioned: Refs.@2#, @3#, and @4#. In general one distin-
guishes between surface and volumetric distortions of
extrudate. Considering extrusion through a capillary die
relatively low shear flow rates, the extruded polymer stra
can develop a surface with a more or less regular patter
ridges resulting in an observable mattness or roughness.
phenomenon is often referred to as the ‘‘sharkskin effec
The period of the sharkskin oscillations is typically in th
order of 0.01 s. The prevalent trend in literature is to ass
ate this sharkskin effect with material slippage at the w
due to a failure of adhesion between the solid die wall a
the fluid. Various experimental findings in, for examp
Refs.@5#, @6#, and@7# seem to support a nonzero wall velo
ity vwall . This leads to some empirical correlations defini
vwall in terms of wall shear stress values~Ref. @8#! or even-
tually to a model proposed by@9# determiningvwall in terms
of differences in surface tension between polymer and
material. However, not all experimental work reported in t
literature supports the wall-slip idea. For example, Refs.@10#
and @11# failed to find a slip value and interpret surface d
fects as a consequence of a cracking of the surface at th
exit. In Ref. @12#, it was explained that the cracking occu
because the surface layer is accelerated from rest to the
erage extrusion velocity. The acceleration causes a stretc
flow, inducing tensile stresses higher than the tensile stre
of the melt can withstand, giving rise to the cracking ph
nomenon~Ref. @13#!. The absence of slip can be advocat
on theoretical grounds on the basis of the existence o
nonmonotonic constitutive equation. All shear rates wh
PRE 581063-651X/98/58~4!/4683~9!/$15.00
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give a negative sloping shear-stress–shear-rate curve ar
stable~Ref. @14#!. It implies that for selected shear rate va
ues more than one shear stress values are possible ca
the development of a more phase system, as worked ou
Ref. @15#. As the nonmonotonic nature of the constitutiv
equation is defined by the molecular composition of the m
terial ~see, e.g., Ref.@16#! the possibility of a surface laye
development and its associated consequences can be co
ered real.

On a microscopic level, a shear dependent model for s
page at a polymer-solid interface was forwarded in Ref.@17#.
Slippage is induced by a few polymer chains bounded to
surface which undergo a coil-stretch transition under
shear stress. This may be understood as the buildup a
wall of a layer of polymer molecules which act as molecu
‘‘grafted’’ to the wall and ‘‘entangled’’ with the bulk of the
fluid. At the transition point the grafted chains disentang
and reduce the frictional forces significantly. Experimen
evidence in Ref.@18#, using evanescent-wave-induced flu
rescence and fringe pattern fluorescence recovery after
tobleaching allowing characterization of dynamic behav
in the immediate vicinity~70 nm! of the solid surface seem
to support the theory and the development of a ‘‘pseu
brush’’ or ‘‘mushroom’’ layer.

At higher flow rates the extrudate emerges in perio
bursts, which is reflected in a pattern of pressure oscillatio
The period of these oscillations is typically on the order
10 s. The dynamics of this so-called ‘‘spurt’’ regime can
described quantitatively in terms of the theory of relaxati
oscillations in terms of the macroscopic variables of press
and flow rate, as reported in Refs.@19# and @20#. At even
higher flow rates, apparently no steady laminar shear fl
mode exists, and grossly distorted extrudates emerge
many polymers. All these instabilities are restricting the e
trusion of polymers for practical purposes. For all practic
purposes, the first sign of any type of extrudate distortion
4683 © 1998 The American Physical Society
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often the sharkskin effect—is considered as a polymer ex
sion failure. Accordingly, the capability of predicting the o
set of any melt flow instability in terms of molecula
composition and flow boundary conditions is critical for o
timizing polymer processing.

In this paper we focus on the onset of the sharkskin in
bility. To that end the original one-dimensional~1D! relax-
ation oscillation model, proposed in Ref.@19#, will be ex-
panded into a 2D model. As for the constitutive equatio
use will be made of the viscoelastic model of Kaye, Be
stein, Kearsly, and Zapas~KBKZ !. It is shown that the re-
sulting model for barrel and die together admits solutio
with a very thin oscillating boundary layer in the die. The
surface oscillations may be appropriately interpreted as
scribing the sharkskin instability.

In the present approach possible slip at the wall is
included. The analysis shows that the KBKZ model also
mits an oscillatory boundary layer if the no-slip condition
applied. Inclusion of slip at the wall would require a tho
ough and separate analysis. Since quantitative theore
models for the slip condition in relation to extruder geo
etry, polymer characteristics, and velocity profile in the d
are not yet available, we have to restrict the present work
this point.

An important aspect of the present model is that the on
of the sharkskin effect can be predicted in terms of the po
mer properties and the extruder geometry. This enables
perimental verification of the results. The present appro
might also offer the possibility to rationalize both the ‘‘wal
slip’’ and ‘‘constitutive’’ origins of melt flow instabilities as
valid macroscopic explanations.

The structure of this paper is as follows. The releva
conservation laws are presented in Sec. II and the resu
equations are brought into dimensionless form in Sec. III
Sec. IV, it is shown that for low values of the pressu
unique steady solutions are found, but that for pressure
ues above a critical one infinitely many steady solutions
ist. In Sec. V the existence of solutions with an oscillati
boundary layer is shown. In Sec. VI the onset of the sha
skin effect is dealt with, while in Sec. VII a discussion of th
results is given.

II. MODELING THE EXTRUSION PROCESS

We consider an extrusion device, which is very simple
includes the essential elements of the extrusion proces
cross section is shown in Fig. 1. The device consists o

FIG. 1. Schematic drawing of the extrusion device.
u-

-

s
-

s

e-

t
-

al
-

n

et
-
x-
h

t
ng
n

l-
-

-

t
A
a

capillary coupled to a barrel. The polymer melt is set in
motion by a plunger. Important characteristics of this syst
are the pressure differenceP over the capillary, the volume
flux Qout leaving the capillary, and the volume fluxQin
pushed into the system by the plunger. The pressure in
barrel is assumed to be uniform. We study the extrus
device under the condition that the plunger velocityvp is
kept constant. This implies that

Qin5vp A, ~2.1!

is also constant. HereA is the area of the plunger.
The flow in the capillary has extensively been studied

Refs.@21–23#. These references showed that the flow in t
capillary can be described as an axisymmetric, incompre
ible, shear flow. The velocity profilev(t,r ) in the capillary is
a function of timet and the radial coordinater only, and not
of the position along the capillary. The shear ratev(t,r ) is
then given by

v~ t,r !52
]v~ t,r !

]r
. ~2.2!

Because of axisymmetry we have, for allt, the condition

v~ t,0!50. ~2.3!

At the wall we impose the no-slip condition

v~ t,R!50, ~2.4!

whereR is the radius of the capillary. Using the condition
above we can write the volume fluxQout through the capil-
lary as

Qout~ t !52pE
0

R

v~ t,r !r dr 5pE
0

R

v~ t,r !r 2 dr. ~2.5!

The modeling of the extrusion process is based on conse
tion laws. In the following we shall apply the laws of con
servation of mass and momentum, respectively.

A. Conservation of mass

Since the flow in the capillary is assumed to be inco
pressible, conservation of mass is trivially satisfied there
the barrel the compressibility of the polymer melt has to
taken into account. Denoting the height of the barrel byh(t)
and the~uniform! density of the melt byr(t), the total mass
in the barrel is given byAhr, while the mass flux leaving the
barrel into the capillary is given byrQout. Conservation of
mass in the barrel is then expressed by the equation

d

dt
~Ahr!52rQout. ~2.6!

The melt compressibilityx of the polymer is defined by

1

r
ṙ5x Ṗ, ~2.7!

where the notationṙ[dr/dt is used. Usingḣ52vp , Eqs.
~2.1!, and~2.7!, we may rewrite~2.6! in the form



rk
-

e

s

th
-

n-
re

is
e
x

th

s

re

r
-
at

he
he

an

e

the

if
ess

les,

PRE 58 4685ONSET OF THE SHARKSKIN PHENOMENON IN . . .
Ṗ5
1

Axh
DQ, ~2.8!

with the definitionDQ5Qin2Qout. The change ofh, given
by vp , is much slower than the typical period of the sha
skin phenomenon. Because of thath is assumed to be con
stant throughout the present analysis.

B. Conservation of momentum

The velocity profile in the capillary is determined by th
following balance of linear momentum:

rS ]v

]t
1~v•“ !vD5“•T, ~2.9!

where v is the velocity andT the total, symmetric stres
tensor. As usually,T is written as the sum

T52pI12hD1S. ~2.10!

HereI is the unit tensor,p the pressure in the capillary,h the
coefficient of the Newtonian viscosity, andD the rate-of-
deformation tensor

D5 1
2 „“v1~“v!T

…. ~2.11!

The form ofS in Eq. ~2.10! follows from the specific consti-
tutive model under consideration. For this we choose
KBKZ model, which will be introduced in some detail un
derneath.

C. KBKZ model

The KBKZ model is a nonlinear viscoelastic model i
cluding memory effects. Full expositions of this model a
given in Refs.@24, 25#. Here we use the version which
appropriate for the present system and described by R
@26, 21#. This version includes only one relaxation rate e
plicitly. This dominant relaxation rate is included intoS in
Eq. ~2.10!. The rest of the spectrum is represented by
term with the Newtonian viscosityh in Eq. ~2.10!. Details of
this modeling approach are given by Ref.@27#. In view of the
symmetry of the capillary we use cylindrical coordinate
with radial coordinater and axial coordinatez. As origin we
choose the point where the capillary merges into the bar

In the KBKZ model the pressurep in the capillary has the
form

p~ t,r ,z!5P~ t !
L2z

L
1mlE

2`

t 1

c1g2~ t,t,r !
e2l~ t2t!dt.

~2.12!

Here L is the length of the capillary,m the elastic shea
modulus,l the relaxation rate, andc a dimensionless con
stant. The quantityg is the magnitude of the shear strain
time t if the strain is applied in the past at timet:

g~ t,t,r !5E
t

t

v~s,r !ds. ~2.13!
-

e

fs.
-

e

,

l.

From Eq.~2.12! it is seen thatp is the sum of an ‘‘internal’’
term including memory effects through an integral over t
past, and an ‘‘external’’ term, which varies linearly along t
capillary.

By Ref. @21#, it is shown that the momentum equation c
be written as

hv1m
g~ t,0,r !

c1g2~ t,0,r !
e2lt

1mlE
0

t g~ t,t,r !

c1g2~ t,t,r !
e2l~ t2t!dt

5
1

2
r

P~ t !

L
2

r

r E
0

r

j
]v~ t,j!

]t
dj ~2.14!

for 0<r<R and t>0. The extrusion is assumed to hav
started att50.

We are interested in the behavior of the system after
transient phenomena have died out, so in the limitt→`. The
second term in the left-hand side of Eq.~2.14! can then be
neglected. After the shiftt2t→t in the third term of Eq.
~2.14! we obtain the equation

hv~ t,r !1mlE
0

t cg~ t,t2t,r !

c1g2~ t,t2t,r !
e2ltdt

5
1

2
r

P~ t !

L
2

r

r E
0

r

j
]v~ t,j!

]t
dj. ~2.15!

III. DIMENSIONLESS MODEL

The equations in Sec. II can be analyzed in detail only
they are put into dimensionless form. The dimensionl
quantities will be denoted using the superscript* . Natural
choices for the units of length and time areR and l21,
respectively. So

r * 5
r

R
, t* 5lt. ~3.1!

For the velocity, the shear rate, and the shear strain profi
we take

v* 5
1

AcRl
v, v* 5

1

Acl
, v, g* 5

1

Ac
g. ~3.2!

The fluxes in Eqs.~2.1! and ~2.5! are scaled accordingly:

Qin* 5
1

AcR3l
Qin ,

Qout* ~ t* !5
1

AcR3l
Qout~ t !5pE

0

1

v* ~ t* ,r * !~r * !2dr* .

~3.3!

The pressureP is scaled with the shear modulusm:

P* ~ t* !5
1

Acm
P~ t !. ~3.4!
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The mass conservation equation~2.8! then transforms into

dP*

dt*
5nDQ* , ~3.5!

where the dimensionless quantityn is defined by
-

ls

e

e
, t

io
ta

yz
s
f

n5
R3

Axhm
. ~3.6!

The accumulated shear straing in Eq. ~2.13! is already di-
mensionless. The KBKZ momentum equation~2.15! reads,
in dimensionless form,
hlv* ~ t* ,r * !1mE
0

t* g* ~ t* ,t* 2t* ,r * !

11„g* ~ t* ,t* 2t* ,r * !…2
e2t* dt* 5

1

2

Rm

L
r * P* 2

R2l2r

r * E
0

r*
j*

]v* ~ t* ,j* !

]t*
dj* . ~3.7!
ct:
ern,
any

the
dels

ono-
in
To simplify the notation we introduce the function

h~x!5
x

11x2 , ~3.8!

with derivative

h8~x!5
d

dx
h~x!5

12x2

~11x2!2 . ~3.9!

Dividing Eq. ~3.7! by m and using Eq.~3.8!, we find

«v* 1E
0

t*
h„g* ~ t* ,t* 2t* ,r * !…e2t* dt*

5
1

2
br * P* 2

a

r * E
0

r*
j*

]v* ~ t* ,j* !

]t*
dj* ,

~3.10!

with the definitions

«5
hl

m
, b5

R

L
, a5

R2l2r

m
. ~3.11!

The parameter« is the ratio of the Newtonian viscosityh and
the extra stress viscositym/l. Note that the quotienta/« is
the Reynolds numberR2lr/h. For the materials under con
sideration we have thata!1. The last term in Eq.~3.10! will
therefore be neglected in the following. In practice we a
have«!1. However, the term with« cannot be omitted. The
product«v* will be shown to play an important role in th
model.

The analysis in the next sections is based on the dim
sionless equations. Because confusion is hardly possible
* symbol will be omitted.

IV. STEADY SOLUTIONS

If the operating conditions are kept constant, the extrus
process is experimentally observed to converge to a cons
or periodic solution when time proceeds. Here we anal
whether the model presented in Sec. III admits constant
lutions, thus with thev andv profiles being independent o
time. If v does not depend ont, we have, from Eq.~2.13!,

g~r ,t,t!5v~r !~ t2t!. ~4.1!
o

n-
he

n
nt
e
o-

Substitution of this into Eq.~3.10! yields the KBKZ momen-
tum equation

H„v~r !…5 1
2 brP, 0<r<1, ~4.2!

with

H~v!5«v1E
0

`

h~vt!e2tdt. ~4.3!

Here we have taken the limitt→`.
For «!1, H is a nonmonotonic function ofv as shown in

Fig. 2. The curve has a relative maximumHmax at vmax, and
a relative minimumHmin at vmin . From Fig. 2 it is immedi-
ately seen that Eq.~4.2! has a unique solution only if the
right-hand side attains a value smaller thanHmin . For values
of the right-hand side in the range (Hmin , Hmax), the equation
has three solutions. In Table I, values forvmax, Hmax, vmin ,
Hmin , andv̄min are given.

V. OSCILLATING BOUNDARY LAYERS

The sharkskin effect is typically a boundary layer effe
the surface of the extrudate shows the sharkskin patt
whereas the inner core of the extrudate does not show
sign of oscillating behavior. Here we analyze whether
observed phenomena can be described in terms of the mo
presented above. Our purpose is to show that the nonm
tonicity of the stress-strain relation implies that the flow

FIG. 2. The functionH in Eq. ~4.3! for «50.01.
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the capillary may develop an oscillating boundary lay
which might be related to the observed sharkskin effect.

For higher values of the pressure, i.e., if1
2 bP.Hmin , the

momentum equations~4.2! have infinitely many constant so
lutions, due to the nonmonotonicity of the functionH as
shown in Fig. 2. Here we shall investigate whether Eqs.~4.2!
have solutions which are oscillating near the wall and c
stant elsewhere in the capillary. Because the sharkskin o
lations have small amplitudes, we shall investigate small a
plitude perturbations of constant solutions. In view of t
fact that observed oscillations are localized near the wall,
search for solutions that are constant everywhere except
very thin boundary layer of thicknessd.

The extrusion device is assumed to operate in the cons
flux mode, so withQin being constant. Let us denote a
arbitrary constant solution of the momentum equations c
responding to the~constant! pressureP0 by v0(r ). In a con-
stant state we haveQout5Qin . A solution oscillating around
this constant solution can be written as

v~ t,r !5v0~r !1v1~r !eiqt, ~5.1a!

Qout~ t !5Qin1Q1ei ~qt1w1!, ~5.1b!

P~ t !5P012dP1ei ~qt1w2!, ~5.1c!

whereq>0 is the angular frequency of the oscillation, a
w1 andw2 are possible phase differences.

The factor 2d in Eq. ~5.1c! is introduced to model the
coupling between the die and the barrel in a consistent w
In the die we expect a pressure oscillation of amplitudeP1
only in the boundary layer, while the inner layer is not pe
turbed. Effectively we thus haveP150 in the inner layer.
The pressureP in the barrel is taken to be uniform. Th
contribution of the pressure oscillationsP1 in the die toP is
therefore weighted as follows. The die and the barrel are
contact via a cross section of the die with areap in nondi-
mensional units. Of this area 2pd belongs to the boundar
layer and the rest to the inner layer. The ratio of these a
is taken as weighting factor.

The amplitudesv1 , Q1 , andP1 of the perturbations are
assumed to be small with respect tov0 , Qin , and P0 , re-
spectively. Because of this we may linearize the momen
equations around the constant state.

The phase differencesw1 and w2 are easily found. Sub
stituting ~5.1a! into ~3.3b! we obtain

Qout~ t !5pE
0

1

v0~r !r 2dr1peiqE
0

1

v1~r !r 2dr. ~5.2!

TABLE I. Values of the quantities denoted in Fig. 2 for vario
values of«.

« vmax Hmax vmin Hmin v̄min

0.001 1.32 0.35 48.7 0.12 0.13
0.003 1.34 0.35 23.9 0.18 0.23
0.010 1.46 0.36 10.0 0.29 0.48
0.025 1.96 0.39 3.91 0.38 1.37
,

-
il-
-

e
r a

nt

r-

y.

-

in

as

m

Comparing this with Eq.~5.1b! we conclude from the fac
that Q1 is real that

Qin5pE
0

1

v0~r !r 2dr,

Q15pE
0

1

v1~r !r 2dr,

w150. ~5.3!

The phase differencew2 follows from the mass conservatio
equation~3.5!. Substitution of Eqs.~5.1a! and~5.1b! into Eq.
~3.5! yields

2idqP1eiw252nQ1 . ~5.4!

Becaused, q, P1 , n, andQ1 are real and positive, we con
clude that

w25
p

2
. ~5.5!

In Sec. VI we investigate whether the KBKZ momentu
equation admits solutions which locally oscillate.

VI. KBKZ MODEL

Here we study solutions of the KBKZ equation~3.10!.
The nonlinearity of Eq.~3.10! comes from the integral

E
0

t

h„g~r ,t,t2t!…e2tdt, ~6.1!

with

g~r ,t,t2t!5E
t2t

t

v~s,r !ds. ~6.2!

Using representation~5.1a!, we can evaluate this integral ex
plicitly. We then obtain

g~r ,t,t2t!5v0~r !t1v1~r ! f ~q,t!eiqt, ~6.3!

with

f ~q,t!52 i
12e2 iqt

q
. ~6.4!

We note thatu f (q,t)u;1/q if q→`, and u f (q,t)u;t if
q→0. The second term at the right-hand side of Eq.~6.3! is
small compared to the first term. This allows for the linea
ization

h„g~r ,t,t2t!…5h~v0t!1v1f ~q,t!eiqth8~v0t!,
~6.5!

with h8 given by~3.9!. Substituting~5.1a! and the lineariza-
tion equation~6.5! into Eq. ~3.10!, we obtain the sum of the
unperturbed part, satisfying Eq.~4.2!, and the perturbed part
given by
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v1~r !F«1E
0

`

f ~q,t!h8~v0~r !t!e2tdtG5
1

2
ibrP1 .

~6.6!

Writing the factorf (q,t) in the form

f ~q,t!5
1

q
@sin~qt!1 i „cos~qt!21…#, ~6.7!

we can split Eq.~6.6! into its real and imaginary parts. Thi
yields the equations

v1~r !@«q2g1„v0~r !,q…#50 ~6.8!

and

v1~r !g2„v0~r !,q…5 1
2 bqrP1 , ~6.9!

where the functionsg1 andg2 are defined as

g1~v0 ,q!52E
0

`

h8~v0t!sin~qt!e2tdt ~6.10!

and

g2~v0 ,q!5E
0

`

h8~v0t!~cosqt21!e2tdt. ~6.11!

Because the perturbations are nonvanishing in the boun
layer only, Eqs.~6.8! and~6.9! hold for 12d <r<1. Equa-
tion ~6.8! has the trivial solutionv1(r )[0, which corre-
sponds to constant momentum. Also a nontrivial solut
exists, corresponding to a periodic perturbation, provid
that the equation

«q2g1„v0~r !,q…50 ~6.12!

is satisfied for someq.0. Because it is physically unaccep
able that the frequency would depend on position, we c
clude that in the oscillating layerv0 has to be constan
within the accuracy of the approximations we have made
the derivations. This implies that the boundary layer must
fairly thin; thusd !1. This is in accordance with the fact th
we are dealing with the onset of sharkskin. The next con
erations are valid only in the limitd→0. In view of this we
may take the factorg2 in Eq. ~6.9! to be independent ofr and
evaluatev0 always at the wall, denoting its value by

v0~1!5vwall . ~6.13!

In Fig. 3, g1(vwall ,q) is plotted as a function ofq for sev-
eral values ofvwall . From this figure it is seen that Eq.~6.12!
has a solution only if the slope ofg1(vwall ,q) at the origin is
positive and steeper than the slope of the line«q. This leads
to the condition

]

]q
g1~vwall ,q!uq5052E

0

`

h8~vwallt!te2tdt .«.

~6.14!

From Eq.~4.3! we find that condition~6.14! is equivalent to
the condition
ry

n
d

-

n
e

-

d

dv
H~v!,0. ~6.15!

This implies that Eq.~6.12! has a solution only ifvwall lies in
the range whereH has negative slope. Also refer to Fig.
whereH is drawn for«50.01. Conditions~6.14! and ~6.15!
thus imply vmax,vwall,vmin , as indicated in Fig. 4. The
resultingv0(r ) profile has thus a discontinuity as shown
Fig. 5. The corresponding velocity profile, obtained by in
grating thev0 profile, has a discontinuity in the slope atr
512d as shown in Fig. 6. It remains to analyze Eq.~6.9!.
Multiplying both sides of Eq.~6.9! by pr 2 and integrating
over the boundary layer 12d <r<1, we obtain

Q1g2~vwall ,u!5
p

2
budP1 . ~6.16!

Combining Eqs.~5.4! and ~6.16!, we may eliminateQ1 and
P1 . This yields

g2~vwall ,u!5
p

4
bn. ~6.17!

The present model predicts that sharkskin may occur if b
conditions~6.15! and ~6.17! are satisfied. Condition~6.15!
implies thatvwallP@vmax,vmin# should hold withvmax and

FIG. 3. The functiong1 as a function ofq for vwall51, 3, 9, and
27. Also, the function«q is drawn for«50.01.

FIG. 4. The thick line indicates a possible shear rate pro
satisfying Eq.~4.2!. The position of the jump from the left branch t
the middle branch determines the thickness of the boundary la
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vmin to be read from Table I. These values depend on«.
Condition ~6.17! further restricts the number of possible s
lutions. We have numerically determined the pa
(vwall ,bn) with vwallP@vmax,vmin#, such that Eq.~6.17! has
a solution for positiveq. The results are summarized in Fi
7 for various values of«. The contour lines in this figure
represent the solutions of Eq.~6.17! with q real and positive.
The points off these lines correspond to solutions with co
plex q. Inside the contour lines the imaginary part ofq is
positive, outside the contour lines it is negative.

In Fig. 7, two regions can be clearly discerned. For«
,0.025 two values forvwall are found as long asbn
,0.01. These values are quite close tovmax and vmin . On
the other hand, forbn.0.05 no solution exists, and thi
holds for all«.

We note that in the limitbn→0 the contour lines ap
proach the values ofvmin andvmax. Following Eq.~3.5!, this
limiting case corresponds to the system being held un
constant pressure. From Eq.~5.4! we conclude thatP150 if
n50, so in that case an oscillating boundary layer does
exist.

VII. ONSET OF THE SHARKSKIN EFFECT

A central issue in any theory about polymer flow ins
bilities is the question whether a critical valueQcrit exists

FIG. 5. The shear rate profile corresponding to the construc
in Fig. 4. Hered is the thickness of the boundary layer.

FIG. 6. The velocity profile corresponding to the shear rate p
file in Fig. 5.
-

er

ot

-

such that the instability does not occur forQin,Qcrit , but
may occur forQin>Qcrit . Of course, not only is the exis
tence of such a transition of importance, but also the po
bility to calculate its value in terms of the polymer properti
and the extruder geometry. We shall point out here the c
sequences of the analysis in Sec. V forQcrit . Because we
have already seen that the essential dimensionless param
are « and the productbn, we show how to findQcrit as a
function of these two parameters.

Condition ~6.15! states thatvwall must lie on the second
branch ofH, where this function has negative slope; see F
2. Condition~6.17! further restricts the number ofvwall val-
ues for which the sharkskin effect may occur. From the c
tour plot in Fig. 7 we find that two values forvwall are found
if bn is small enough. In Fig. 8 these values are indicated
va and vb , with vmax<va<vb<vmin . For small values of
Qin the pressureP is small. From Eq.~4.2! and Fig. 2, it then
follows that thev(r ) profile is completely situated on th
left branch ofH.

Let us follow what happens if, as is usual in the expe
ments,Qin is increased so gradually that, apart from transi
phenomena, Eq.~4.3! remains valid. We focus now on th
regime in which the system does not yet show volume
distortions. Then,Qout;Qin . We wonder when surface dis
tortions, thus the sharkskin effect, may appear for the fi
time.

An increase ofQin implies an increase of the pressureP,
and thus ofH, and thus ofvwall . In Fig. 2, we observe tha
vwall can attain a value on the second branch ifH passes the
valueHmin , andvwall thus passes the valuev̄min .

From Fig. 8 we see that the sharkskin effect may occu
H attains the valueH(vb) for the first time. We thus con-
clude that the possible onset of the sharkskin effect is de
mined by the conditionvwall5v̄b . The correspondingv(r )
profile is completely situated on the left branch ofH between
0 andv̄b . The corresponding critical valueQcrit can be cal-
culated from Eq.~3.3b!.

In Fig. 9 we have drawnQcrit as a function ofbn for «
50.01. For other« values the results are quite similar. W
discern the same two regimes as found in Fig. 7:Qcrit is
nearly independent ofbn if bn,0.02, whereas for large
values,bn.0.05 say, no sharkskin effect can occur, i.

n

-

FIG. 7. Contour lines indicating the solutions of Eq.~6.17! in
the (bn,vwall) plane.
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Qcrit5`. So we conclude that, in a good approximation,Qcrit
only depends on« as long asbn is small. This dependence i
given in Fig. 10. Note thatQcrit is a dimensionless quantity
the dimensionful value is obtained from the scaling in E
~3.3!. Another interesting feature of the model is that it pr
dicts the angular frequency of the sharkskin oscillations
Fig. 11 the value of the dimensionless frequencyq is given
as a function ofbn for «50.01. The dimensionful frequenc
is found from the scaling in Eq.~3.1!. In Fig. 11 it is seen
that q→0 if bn→0. Above we have found that forbn
.0.05 the sharkskin effect does not occur. From Fig. 11
find that for very smallbn values the sharkskin effect ma

FIG. 8. Position ofva andvb in the (v,H) plane.

FIG. 9. Qcrit as a function ofbn for «50.01.
.
-
n

e

occur but with such a low frequency that it will not be d
tected experimentally.

VIII. DISCUSSION

In Secs. V and VI, we have shown that the model in S
II, describing polymer shear flow through a die coupled to
barrel, admits solutions with a thin, oscillating bounda
layer in the die. As constitutive equation the KBKZ mod
has been used. However, in Ref.@28# it was shown that ap-
plication of the Johnson-Segalman-Oldroyd model~see Refs.
@24, 25#! leads to very similar results, although the formul
involved are quite different from the KBKZ expression
above.

FIG. 10. Qcrit as a function of«.

FIG. 11. Angular frequencyq as a function ofbn for «
50.01.
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The existence of oscillating solutions depends on the
mensionless parameters« and bn, introduced in Eqs.~3.6!
and ~3.11!. These parameters are determined by the cha
teristics of both the extruder geometry and the polymer pr
erties. It is found that an oscillating boundary layer exi
only if bn is small enough. As a rule of thumb we formula
this as the condition

bn[
R4

AxhmL
,0.05. ~8.1!

If Eq. ~8.1! is fulfilled, the critical valueQcrit of the volume
flux Qin is nearly only dependent on«, and given in Fig. 10.
The angular frequencies of the oscillations do depend onbn,
as is shown in Fig. 11.

An attractive and important feature of these results is t
they allow a direct comparison with experiment. Although
might be hard to use polymers characterized by one re
ation time only, the qualitative aspects of this analysis m
hold quite generally. For example, the existence of a crit
value forbn, given in Eq.~8.1! can be quite easily checke
experimentally. Becausebn is very sensitive to the value o
the die radiusR, the latter geometrical parameter is qu
appropriate to be varied in the experiment. WhenR is varied
in the experiment, not only condition~8.1! could be checked
but also the dependence of the angular frequencyq on bn,
and thus onR, as predicted by the results in Fig. 11.
practice, the extrudate seldom shows a highly regular pat
of ridges. This is in accord with the analysis above, that
-

ol

s

-

i-

c-
-

s

t
t
x-
st
l

rn
e

sharkskin effect can be interpreted as a boundary layer
becomes unstable. The possible oscillations only start if
layer is perturbed, and this will usually happen in an unco
trolled way. However, in most cases it is still possible
detect a definite frequency in the sharkskin pattern.

Another observation is thatbn;h21, with h the length of
the barrel. This implies that the sharkskin instability shou
stop, if h→0, i.e., if the barrel becomes empty, because th
condition ~8.1! is violated.

The critical volume fluxQcrit only depends on«, and the
dependence is given in Fig. 10. Because«5hl/m, this criti-
cal value only depends on the polymer properties. T
present model predicts that the smaller« is, the smallerQcrit

will be. The model further states that the dimensionfulQcrit

scales withR3 @cf. Eq. ~3.3!#. These tendencies can easily b
checked in experiments.

If the results of the present analysis qualitatively ag
with the experimental data, the model can be considered
first step in the direction of a theoretical description of e
trusion instabilities. A very interesting extension would
the coupling of the present model to a model describing p
sible slip at the wall. An other refinement would be the i
clusion of a spectrum of relaxation times. Since along th
lines the relations between experimentally accessible qua
ties like Qcrit and q and the geometrical and polymer me
parameters become known, this approach could be use
find extruder-polymer combinations with high values ofQcrit
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